TABLE 1-continued | # | Vehicle
system | Ratio | Physical
state @
Room
Temperature | Physical
state @
37° C. after
~30 minutes | Viscosity cps | Melting
Time @
37° C. | Dispersion
in water
37° C. | |----|-----------------------------|-------|--|--|----------------|--|-----------------------------------| | 9 | MCM: TEFOSE ® 63 | 9:1 | Semisolid | Liquid/cloudy | 150@
25° C. | Start: 1 min
Finish: 5 min | Uniformly cloudy dispersion | | 10 | MCM: TEFOSE ® 63 | 8:2 | Semisolid | Semisolid | 240@
25° C. | | Uniformly cloudy dispersion | | 11 | MCM: TEFOSE ® 63 | 7:3 | Semisolid | Semisolid | 380@
25° C. | Semisolid
after 30 min
at
37° C.,
doesn't
melt at
41° C. | Uniformly
cloudy
dispersion | | 12 | MIGLYOL ® 812:
50/13 | 9:1 | Semisolid | Semisolid | 140@
25° C. | | 2 phases,
oil on top | | 13 | Miglyol 812:
TEFOSE ® 63 | 9:1 | Liquid/
cloudy | Liquid/cloudy | 90@
25° C. | Start: 1 min
Finish: 5 min | 2 phases,
oil on top | Vehicle systems in TABLE 1 that were liquid or semisolid at room temperature were tested using a Brookfield viscometer (Brookfield Engineering Laboratories, Middleboro, MA) Gel masses A through F were prepared according to the formulations in TABLE 2, Gel masses A through F differ in the proportion of one or more components, for example. TABLE 2 | Ingredient | Gel A
% w/w | Gel B
% w/w | Gel C
% w/w | Gel D
% w/w | Gel E
% w/w | Gel F
% w/w | |--|-----------------|-----------------|-----------------|-----------------|------------------|----------------| | Gelatin, NF (150 Bloom, Type B) | 41.0 | 41.0 | 41.0 | 41.0 | 43.0 | 43.0 | | Glycerin 99.7%, USP | 6.0 | 6.0 | 6.0 | 6.0 | 18.0 | 18.0 | | Sorbitol Special, USP | 15.0 | 15.0 | 15.0 | 15.0 | | | | GELITA ® (hydrolyzed collagen) | 3 | | | | 3.0 | | | Citric acid | | 0.1 | 0.5 | 1 | | 0.1 | | Purified Water | 35.0 | 37.9 | 37.5 | 37.0 | 36.0 | 38.9 | | Total Dissolution gel strips, Avg of 3 | 100.0
48 min | 100.0
50 min | 100.0
75 min | 100.0
70 min | 100.0 | 100.0 | | (500 ml DH2O, 50 rpm @ 37° C.) | (42, 45, 58) | (50, 51, 50) | (76, 75, 74) | (70, 71, 70) | | | | Dissolution gel strips, Avg of 3 (500 ml pH 4 buffer, 50 rpm @ 37° C.) | 70 min | | | | 72 min
84 min | 82 min | at room temperature. Vehicle systems appearing in TABLE 1 that were solid at ambient temperature were tested using a Brookfield viscometer at 37° C. Vehicle systems appearing in TABLE 1 that were solid were placed at 37° C. to assess their melting characteristics. The results are in TABLE 1, It is noted that vehicle system 11 in TABLE 1 did not melt at 37° C. or 41° C. A dispersion assessment of the vehicle systems appearing in TABLE 1 was performed. The dispersion assessment was performed by transferring 300 mg of each vehicle system in $100\ ml$ of 37° C. water, without agitation, and observing for mixing characteristics. ## Example 2 ## Formulation: Gel Mass In various embodiments, a vehicle system may be combined with a gel mass. A gel mass may comprise, for example, gelatin (e.g., Gelatin, NF (150 Bloom, Type B)), hydrolyzed collagen (e.g., GELITA®, GELITA AG, Eberbach, Germany), glyercin, sorbitol special, and/or other suitable materials in varying proportions. Sorbitol special may be obtained commercially and may tend to act as a plasticizer and humectant. Each gel mass A through F was prepared at a temperature range from about 45° C. to about 85° C. Each molten gelatin mass A through F was cast into a film, dried and cut into strips. The strips were cut into uniform pieces weighing about 0.5 g, with about 0.5 mm thickness. Strips were placed into a USP Type 2 dissolution vessel in either water or pH 4 buffer solution and the time for them to completely dissolve was recorded and listed in TABLE 2, It is noted that gel mass A has the fastest dissolution in both water and pH 4 buffer solution. ## Example 3 Formulation: Final Formulation Various combinations of vehicle systems from TABLE 1 and gel masses from TABLE 2 were prepared. The combinations are shown in TABLE 3. TABLE 3 | Trial | Vehicle system | Ratio | Batch Size g | Gel | |-------|-------------------------|-------|--------------|--------------| | 1 | MCM:39/01 | 8:2 | 750 | A | | 2 | MCM:50/13 | 8:2 | 750 | A | | 3 | MCM:TEFOSE ® 63 | 8:2 | 750 | Α | | 4 | MCM:TEFOSE ® 63 | 8:2 | 750 | В | | 5 | MIGLYOL ® 812:TEFOSE 63 | 9:1 | 750 | \mathbf{A} |